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ABSTRACT	
	
Genome-wide	sequence	variation	such	as	single	nucleotide	polymorphisms	(SNPs)	
have	been	successfully	utilized	toward	inferring	genetic	components	of	traits	or	
diseases.	Likewise,	prediction	of	phenotypes	from	genomic	data	has	been	tested	in	
human	and	livestock	species	with	promising	results.	Our	success	with	either	
inference	or	prediction	is	theoretically	dependent	on	a	number	of	biological	factors,	
which	if	unaccounted	for,	can	dampen	our	ability	to	detect	quantitative	trait	loci	
(QTL),	determine	the	observed	heritability	of	a	trait,	or	successfully	predict	a	
phenotypic	outcome.	These	factors	are	especially	apparent	when	the	goal	is	to	
predict	phenotypes	among	heterogeneous	populations	in	which	linkage	
disequilibrium	between	observed	markers	and	underlying	QTL,	marker	allele	
frequencies,	and	QTL	effects	can	differ	from	subpopulation	to	subpopulation.	
Furthermore,	recent	advances	in	high	throughput	sequencing	of	transcriptomes	
have	revealed	that	single	nucleotide	variants	(SNVs)	can	exist	within	the	
transcriptome	without	existing	in	the	genome,	thus	adding	potential	explanatory	
variables	that	go	unrecognized	if	one	simply	uses	sequence	variation	observed	at	
the	level	of	the	genome	to	explain	phenotypic	variation.	This	is	made	possible	by	a	
mechanism	known	as	RNA	editing,	in	which	the	eukaryotic	cell	intentionally	makes	
single	nucleotide	changes	within	premature	RNA	transcripts.	For	my	thesis	
proposal,	I	will	build	and	assess	new	tools	and	methodology	to	enhance	genomic	
prediction	among	heterogeneous	populations	as	well	as	characterize	RNA	editing	
patterns	genome-wide	to	better	understand	the	evolution	of	this	phenomenon	and	
the	extent	that	it	provides	additional	sources	of	genetic	variation	with	which	to	
utilize	in	genome-wide	studies.	
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SPECIFIC	AIMS	
	
I	propose	to	establish	new	statistical	methods	to	enhance	predictive	capacity	of	
heritable	traits	in	heterogeneous	and	admixed	populations	by	incorporating	
estimates	of	ancestral	composition	with	existing	sources	of	genomic	sequence	
variation.	In	addition,	using	bioinformatic	approaches	I	aim	to	reveal	new	sources	of	
genomic	sequence	variation	in	the	form	of	RNA	editing	loci	and	explore	the	patterns	
and	consistency	of	this	phenomenon	between	individuals,	tissues,	and	across	
species.	
		
Aim	1)	Develop	and	implement	a	new	approach	for	genomic	prediction,	termed	the	
“continuous	model”,	to	account	for	complex	genetic	heterogeneity.	
	

1a)	Determine	how	prediction	accuracy	from	the	continuous	model	compares	
to	prediction	accuracy	from	previously	developed	“stratified”	and	“interaction”	
models.		
	

	 1b)	Develop	the	means	to	perform	hypothesis	testing	with	the	continuous	
model	in	order	to	infer	significance	of	SNP	effects.	

	
	
Aim	2)	Investigate	the	function	and	impact	of	RNA	editing	throughout	mammalian	
evolution	and	build	novel	tools	for	the	detection,	analysis,	visualization	of	RNA	editing	
data.	
	

2a)	Build	software	specifically	designed	for	the	detection,	analysis,	and	
visualization	of	RNA	editing	data	from	multiple	high-throughput	technologies.	
	
2b)	Test	software	using	swine	as	a	model	for	RNA	editing.	Long	read	and	short	
read	sequencing	technologies	will	be	compared	for	their	ability	to	detect	RNA	
editing	events,	and	a	subset	of	RNA	editing	candidates	will	be	validated	to	
assess	detection	accuracy.	
	
2c)	Perform	a	comparative	study	in	which	RNA	editing	patterns	are	compared	
across	a	number	of	mammalian	species	harboring	different	genomic	features.	
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BACKGROUND	AND	SIGNIFICANCE	
	
Aim	1)	
Using	additive	genetic	models	for	prediction	
	

According	to	the	classic	quantitative	genetics	model,	the	regression	of	a	
quantitative	phenotype	onto	allele	content	(dosage	of	a	particular	allele)	provides	a	
means	to	quantify	the	average	effect	of	alleles	(Falconer	and	McKay	1996).	The	sum	
of	average	effects	for	each	allele	at	a	particular	locus	is	an	estimate	of	the	additive	
value	or	breeding	value	of	the	genotype.	Additive	values,	suggested	by	their	name,	
provide	a	best	estimate	of	how	a	phenotype	will	be	impacted	by	a	particular	
genotype,	assuming	the	alleles	at	the	genotype	act	additively.	This	assumption	has	
potential	to	work	well	within	animal	genetics,	as	selection	of	animals	for	breeding	
based	on	the	sum	of	their	additive	values	is	projected	to	result	in	a	8-38%	extra	
genetic	gain	beyond	simply	using	pedigree	information	to	inform	selection	decisions	
(Meuwissen	and	Goddard	1996).	For	certain	traits,	and	for	other	applications	
including	the	genomic	prediction	of	complex	human	disease,	the	additive	model	may	
not	be	sufficient	because	it	ignores	effects	due	to	dominance	(interactions	between	
alleles	at	the	same	locus)	and	epistasis	(interactions	between	loci)	(Huang	et	al.	
2012).	However,	the	additive	model	continues	to	be	useful	for	genomic	selection	
and	for	the	estimation	of	narrow-sense	heritability	of	complex	human	traits	(Yang	et	
al.	2010).	

The	development	of	dense	marker	maps	in	various	animal	and	plant	species	
containing	positions	of	single	nucleotide	polymorphisms	(SNPs)	prompted	the	
application	of	the	additive	quantitative	genetics	model	to	many	(	>	10,000)	markers	
simultaneously	(Meuwissen,	Hayes	and	Goddard	2001).	This	approach	can	be	
represented	with	
	

𝒚 = 𝟏𝜇 + 𝑿𝒃 + 𝜺,	 (1)	
	
where	𝒚	represents	the	data	vector	of	phenotypic	measurements	for	each	of	the	𝑛	
animals/observations,	𝟏𝜇	is	a	unit	vector	multiplied	by	the	phenotypic	mean,	𝑿	is	
the	𝑛	×	𝑚	incidence	matrix,	with	each	of	the	𝑚	markers	represented	as	the	dosage	
of	a	particular	allele	{0,	1	or	2},	𝒃	is	a	vector	containing	average	effects	for	each	SNP,	
and	𝜺	is	a	vector	containing	errors	for	each	observation.	Both	𝒃	and	𝜺	can	be	
assumed	to	come	from	random	distributions	𝑁 0, 𝐈σ𝒃2 	and	𝑁 0, 𝐈σ32 ,	respectively.	
Alternatively,	an	equivalent	model	can	be	expressed	as	
	

𝒚 = 𝟏𝜇 + 𝒁𝒖 + 𝜺,	 (2)	
	

where	𝒚	and	𝜺	are	the	same	as	before,	𝒁	denotes	an	incidence	matrix	connecting	
additive	values	to	phenotypes	and	𝒖	represents	a	vector	of	additive	effects	or	
breeding	values,	assumed	to	be	a	draw	from	the	random	distribution	𝑁 0, 𝐆σ72 ,	
where	𝐆	represents	the	genomic	relationship	matrix	and	is	proportional	to	𝑿𝑿′,	
providing	a	measurement	of	genetic	relatedness	between	all	individuals	contained	
in	𝑿.	



	 6	

This	model	is	appealing	in	that	it	is	both	simple	and	effective	(provided	𝑛	is	
sufficiently	large)	at	providing	estimates	of	all	SNP	effects	simultaneously	by	
borrowing	information	for	all	individuals	contained	in	𝑿.	This	means	that	if	
individuals	in	X	come	from	differing	subpopulations,	our	estimate	of	b	could	be	
confounded	by	the	fact	that	estimated	SNP	effects	may	be	different	between	
subpopulations.	Nevertheless,	utilizing	a	heterogeneous	training	population	to	fit	a	
model	such	as	this	consisting	of	both	Jersey	and	Holstein	cattle	has	shown	success	in	
enhancing	genomic	prediction	of	breeding	values	for	purebred	Jersey	animals	by	up	
to	13%	when	compared	to	training	the	model	on	Jersey	animals	alone	(Hayes	et	al.	
2009).		
	
Challenges	associated	with	SNP	effect	estimation	among	complex	substructure	
	
	 When	conducting	genome-wide	regressions,	our	parameters	of	interest	-	the	
so-called	“SNP	effects”,	are	most-often	not	a	product	of	the	observed	SNP	itself.	
Instead,	estimated	SNP	effects	are	a	byproduct	of	the	SNP	being	in	linkage	
disequilibrium	(LD)	with	the	true	quantitative	trait	loci	(QTL).	As	in	the	cattle	study,	
in	instances	where	the	training	of	a	whole	genome	regression	model	using	a	
heterogeneous	population	results	in	a	gain	in	accuracy	of	SNP	effects,	it	can	be	
assumed	that	major	QTL	were	in	LD	with	the	same	SNP	for	both	Jerseys	and	
Holsteins,	and	that	those	QTL	effects	were	the	same	between	Jerseys	and	Holsteins.	
In	practice,	QTL	will	not	always	be	in	LD	with	the	same	SNP	across	subpopulations.	
Furthermore,	the	true	underlying	QTL	effects	may	not	be	the	same	across	groups	
due	to	the	effects	of	dominance,	epistasis,	or	potential	epigenetic	mechanisms	that	
are	group	or	environment	specific.	
	 In	the	context	of	genome-wide	association	studies	(GWAS),	in	which	the	goal	
is	to	find	SNPs	significantly	associated	with	a	trait	or	disease,	population	
stratification	is	considered	a	confounder	that	can	be	partly	accounted	for	by	using	
the	top	principal	components	(PCs)	from	the	genomic	data	(Price	et	al	2006).	While	
accounting	for	the	top	PCs	can	reduce	the	number	of	spurious	genetic	associations	
for	the	phenotype	of	interest,	it	is	not	necessarily	satisfactory	for	improving	the	
estimation	of	SNP	effects	that	can	be	used	for	prediction.	Principal	components	
resulting	from	the	vector	decomposition	of	𝐆	have	been	included	as	fixed	effects	in	
whole	genome	regression	models	aimed	at	estimating	breeding	values	among	multi-

Figure	1.	The	change	in	across	
breed	genomic	predictions	(in	
which	the	breed	in	question	was	
removed	from	a	heterogenous	
reference	panel,	then	predicted)	
for	greasy	fleece	weight	(GFW)	
and	eye	muscle	depth	(EMD)	as	
an	increasing	number	of	PCs	
derived	from	G	are	included	as	
fixed	effects.	BL	–	Border	
Leicester,	MER	–	Merino,	PD	–	
Polled	Dorset,	WS	–	White	
Suffolk	(Daetwyler	et	al	2012).	
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breed	sheep	(Daetwyler	et	al	2012).	As	more	principal	components	are	included,	
across	breed	prediction	accuracy	was	shown	to	decrease	(Figure	1).	

Rather	than	thinking	of	population	substructure	as	a	confounding	variable	
that	needs	accounting	for,	genomic	prediction	can	theoretically	use	substructure	to	
decompose	the	SNP	effect	for	site	𝑗	into	those	common	to	all	groups	𝑏;< ,	plus	a	
group	specific	effect	𝑏=< 	(de	los	Campos	et	al.	2015).	This	so-called	“interaction	
model”	assuming	the	presence	of	2	groups	can	be	expressed	as	
	

																																		
𝒚>
𝒚2 = 𝟏𝜇>

𝟏𝜇2
+ 𝑿>

𝑿2
𝒃; +

𝑿>
𝟎 𝒃> +

𝟎
𝑿2

𝒃2 +
𝜺>
𝜺2 	,	 (3)	

	
which	contains	the	same	terms	as	(1),	only	the	subscript	𝑖	denotes	the	group.	For	
example,	QTL	could	have	the	same	effect	between	groups	(𝑏;<)	but	the	extent	of	LD	
between	QTL	and	SNP	marker	𝑗	could	differ	between	groups,	thus	leading	to	a	group	
specific	SNP	effect	(𝑏=<).	Together,	𝑏;< + 𝑏=< = 𝛽=< ,	can	provide	the	total	SNP	effect	
for	marker	𝑗	for	an	individual	belonging	to	group	𝑔.	Alternatively,	we	can	assume	
that	there	is	no	common	component	of	the	SNP	effect	between	groups	(𝑏; = 0)	
using	a	so	called	“stratified	model”.	This	can	be	represented	with	
	

																																											
𝒚>
𝒚2 = 𝟏𝜇>

𝟏𝜇2
+ 𝑿>

𝟎 𝒃> +
𝟎
𝑿2

𝒃2 +
𝜺>
𝜺2 	.	 (4)	

	
These	models	provide	a	way	to	estimate	SNP	effects	among	a	heterogeneous	
population	with	clearly	defined	clusters,	but	the	question	of	how	to	best	model	
heterogeneity	containing	complex	substructure	such	as	admixed	individuals	
(hybrids	or	crossbred	animals	descending	from	2	or	more	clusters)	remains	a	
question.	Conceivably,	the	first	approach	to	modeling	admixed	individuals	could	be	
to	first	quantify	their	ancestral	composition,	however	whole	genome	regression	
models	have	not	incorporated	ancestral	composition	to	enhance	the	accuracy	of	SNP	
effects.	
	
	
Ancestral	composition	estimation	
	
	 Methods	to	estimate	breed	or	ancestral	composition	have	been	devised	that	
use	group	allele	frequencies	(Kuehn	et	al.	2011).	In	bulls,	the	following	regression	
model	was	used	
	

𝒚 = 𝑿𝒄 + 𝜺,	 (5)	
	
where	𝒚	is	a	vector	of	a	test	bull’s	genotypes	divided	by	2	{0,	0.5,	or	1},	𝑿	is	a	matrix	
of	allele	frequencies,	with	each	row	representing	a	different	SNP,	and	columns	
representing	a	different	purebred	breed	or	group.	𝒄	is	a	vector	containing	fixed	
effects	for	each	group	and	𝜺	is	a	vector	of	errors	for	each	SNP.	The	vector	𝒄	can	
represent	relative	composition	estimates	for	the	animal	whose	genotypes	are	
represented	in	𝒚,	however	assuming	this	model	is	fit	using	an	unbiased	estimator	
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such	as	ordinary	least	squares	(OLS),	the	interpretation	of	each	element	of	𝒄	may	
not	be	clear	in	cases	where	𝑏< 	is	less	than	0	or	greater	than	1.	In	order	to	allow	for	
the	elements	of	𝒄	to	represent	group	compositions	or	group	proportions,	the	OLS	
equations	can	be	solved	using	quadratic	programming	in	such	a	way	to	force	each	
element	of	𝒄	to	be	between	0	and	1	and	all	elements	to	sum	to	1.		
	
	
Aim	2)	
RNA	Editing	–	A	source	of	hidden	sequence	variation	
	

Hypothetically,	for	any	given	animal	species,	even	the	densest	SNP	panel	can	
fail	to	“tag”	all	sequence	variants	by	way	of	linkage	disequilibrium,	no	matter	how	
large	the	sample	size.	One	reason	for	this	is	that	mechanisms	such	as	RNA	editing	
permit	the	cell	to	make	changes	to	RNA	sequences	without	having	to	change	the	
“hard	wired”	genomic	sequence	(Benne	et	al.	1986).	In	this	way,	the	cell	can	make	
“soft”	changes	to	the	nucleotide	sequence	of	transcribed	genes	without	having	to	
rely	on	permanent	genomic	mutations.	These	mechanisms	result	in	single	
nucleotide	variants	(SNVs)	that	are	unique	to	the	transcriptome.	Although	current	
approaches	for	genomic	prediction	are	not	concerned	with	transcriptome-specific	
SNVs	such	as	those	caused	by	RNA	editing,	future	efforts	to	combine	genomic,	
transcriptomic,	and	epigenetic	data	for	the	purpose	of	predicting	traits	or	diseases	
are	increasingly	immanent.	Our	ability	to	appropriately	merge	RNA	editing	data	
with	other	“omics”	data	types	for	the	purpose	of	inference	or	prediction	is	
dependent	on	our	ability	to	both	accurately	identify	RNA	editing	sites	via	high-
throughput	methods	and	understand	their	underlying	functionality.	

	
A	 	 	 	 	 B	

	
		 	 	

	 	
	

	
	

	
	
	

Figure	2.	(A)	Hypothetical	example	of	DNA	sequence	(blue)	at	a	homozygous	locus.	Some	proportion	of	
RNA	sequences	transcribed	from	this	locus	will	fail	to	match	the	sequence	encoded	in	the	genome	due	to	
RNA	editing	(green).	(B)	Mechanism	catalyzed	by	ADAR,	an	Adenosine	to	Inosine	(A-to-I)	deamination	
along	RNA	transcripts,	observed	as	an	Adenosine	to	Guanine	(A-to-G)	after	reverse	transcriptase	is	used	
to	make	cDNA	(Modified	from	Nishikura	2010).	
 
	
ADAR	biology	and	common	targets 
 

In	mammals,	RNA	editing	is	thought	to	take	a	predominant	form	
transcriptome-wide,	an	adenosine	to	inosine	deamination	catalyzed	by	adenosine	
deaminase	acting	on	RNA	(ADAR)	(Figure	2).	Catalytic	activity	of	ADAR	is	dependent	

DNA ACGTAGGCA (maternal copy) 
 ACGTAGGCA (paternal copy) 
cDNA ACGTAGGCA 

ACGTGGGCA 
 ACGTGGGCA 
 ACGTGGGCA 
 ACGTGGGCA 
 ACGTAGGCA 
 ACGTAGGCA 
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on	a	double-stranded	RNA	(dsRNA)	substrate,	whereby	conversion	from	adenosine	
to	inosine	on	one	strand	typically	results	in	unwinding	of	double	stranded	RNA	
species	(Bass	and	Weintraub	1988).	ADAR	function	is	spread	across	three	distinct	
genes,	ADAR1,	ADAR2,	and	ADAR3.	ADAR1	is	ubiquitously	expressed	and	under	the	
control	of	three	promoters,	two	of	which	are	constitutive	while	the	third	is	
interferon	induced	(George	CX	et	al	1999).	ADAR2	is	primarily	expressed	among	
cells	of	the	central	nervous	system	(Melcher	T	et	al	1996),	while	less	is	known	about	
ADAR3,	which	is	primarily	expressed	in	the	brain	(Chen	et	al	2000).	

Knockout	experiments	have	shown	that	ADAR	and	RNA	editing	is	essential	for	
life.		ADAR1-/-	mice	leads	to	embryonic	lethality	due	to	widespread	apoptosis	(Wang	
et	al	2003),	while	ADAR2	-/-	mice	die	young	from	seizures	resulting	from	under-
editing	at	the	Q/R	site	within	GluR-B	receptor	pre-mRNA,	required	for	glutamate	
AMPA	receptor	ion	channel	function.	This	phenotype	can	be	rescued	by	introducing	
a	GluR-BR	genomic	mutation,	which	mimics	the	edited	form	of	GluR-B	(Higuchi	et	al	
2000).	

Although	RNA	editing	of	coding	regions	such	as	GluR-B	is	essential	for	life,	this	
phenomenon	is	suggested	to	rarely	result	in	the	recoding	of	protein	sequences	
(Kleinman	et	al.	2012).	Alternatively,	high-throughput	approaches	to	identify	
candidate	RNA	editing	sites	have	shown	that	a	substantial	amount	of	RNA	editing	
events	reside	within	non-coding,	repetitive	regions.	In	humans,	the	primate	specific	
Alu	retrotransposon	has	been	shown	to	attract	most	A-to-I	editing	transcriptome	
wide	(Athanasiadis	et	al	2004;	Blow	et	al.	2004;	Levanon	et	al.	2004;	Eisenberg	et	al.	
2005;	Bazak	et	al.	2014). Few	comparative	studies	have	been	done	to	determine	if	
retrotransposons	in	other	species	can	attract	as	much	editing	activity.	Many	
speculate	that	widespread	A-to-I	editing	is	specific	to	primates,	due	to	Alu	elements’	
relatively	low	divergence	and	high	copy	number,	which	increases	the	amount	of	
dsRNA	in	the	primate	transcriptome	relative	to	other	species	(Eisenberg	et	al.	2005,	
Neeman	et	al.	2006). 

The	initial	sequencing	of	the	human	genome	revealed	a	preference	for	Alus	to	
be	near	and	within	genic	regions	(Lander	et	al.	2001).	As	a	result,	human	RNA	
editing	sites	are	typically	clustered	in	introns,	3’UTRs,	and	gene-proximal	regions	
(Athanasiadis	et	al	2004,	Figure	3).	The	function	of	these	non-coding	RNA	editing	
sites	remains	largely	a	mystery,	but	instances	of	Alu	exonization	modulated	by	RNA	
editing	have	been	documented,	in	which	either	splice	sites	or	splicing	enhancers	are	
created	upon	A-to-I	editing	(Lev-Maor	et	al.	2007,	Sela	et	al.	2009).	Additionally,	
RNAi	pathways	have	been	shown	to	be	antagonized	by	RNA	editing,	as	dsRNAs	that	

are	extensively	edited	become	resistant	
to	Dicer	processing	(Scadden	and	Smith	
2001).	

 

	

Figure	3.	Retrotransposons	such	as	LINEs	(long	interspersed	
nuclear	repeats)	and	SINEs	(short	interspersed	nuclear	
repeats)	direct	the	editing	of	pre-mRNAs	in	non-coding	
portions	of	genes	(Modified	from	Nishikura	2010).	
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Although	editing	of	coding	regions	is	rare	and	not	marked	by	retrotransposons,	it	is	
nevertheless	site-specific	as	in	the	case	of	the	Q/R	site	within	GluR-B.	One	theory	is	
that	non-Alu	editing	sites	are	dependent	on	nearby	edited	Alu	sites,	which	attract	
ADAR	in	enough	density	to	catalyze	the	editing	of	short,	nearby	double	stranded	
stretches	of	RNA	in	coding	regions	(Ramaswami	et	al.	2012,	Figure	4).	Using	in-vitro	
experiments,	editing	of	either	human	or	mouse	NEIL1,	GLI1,	and	ZFP14	within	their	
respective	coding	regions	has	been	shown	to	be	affected	by	the	presence	of	flanking	
human	Alu	elements	(Danial	et	al.	2014).	It	has	yet	to	be	determined	whether	non-
primate	SINE	elements	can	act	in	the	same	way	as	the	human	Alu	to	enhance	the	
editing	level	of	nearby	coding	regions.	
	
A	 	 	 	 	 					B	 	 	 																		 	 	
		
	 	
	
	
	

	
	
	
	
	

	
	
	
	
Figure	4.	Model	for	RNA	editing	of	coding	regions.	(A)	The	ancestral	transcriptome	is	thought	to	contain	
low	levels	of	editing	in	coding	regions,	maintained	by	short	hair-pin	loops.	(B)	The	arrival	of	the	primate	
specific	Alu	has	enhanced	the	length	of	hair-pin	loops	throughout	the	transcriptome,	recruiting	ADAR	in	
high	enough	density	to	increase	the	editing	of	nearby	coding	regions	(Modified	from	Daniel	et	al.	2014)	
	
	
Bioinformatic	approaches	to	identify	RNA	editing	sites	
	

No	technology	exists	to	sequence	or	genotype	the	“editome”	(collection	of	all	
editing	levels	throughout	the	transcriptome)	of	any	species.	Instead,	the	
computational	methodology	needed	to	identify	instances	of	RNA	editing	using	
existing	technology	such	as	whole	genome	sequencing	(WGS)	and	RNA-Seq	is	still	
being	developed.	In	conducting	these	studies,	the	goal	is	to	identify	with	high	
confidence,	loci	in	which	the	genome	sequence	fails	to	match	the	corresponding	
transcriptome	sequence.	A-to-G	(DNA-to-RNA)	mismatches	of	these	kind	provide	
evidence	of	ADAR	catalyzed	A-to-I	editing,	because	inosine	is	converted	to	guanine	
during	reverse	transcription.	For	any	given	mismatch,	the	proportion	of	reads	
containing	guanine	provides	an	estimate	of	the	“editing	level”	for	that	site.	Initial	
studies	to	incorporate	WGS	and	RNA-Seq	into	an	RNA	editing	detection	pipeline	
have	suggested	widespread	differences	between	DNA	and	RNA	sequence	consisting	
of	substantial	DNA-to-RNA	mismatches	of	all	types	(many	non	A-to-G),	
transcriptome-wide	(Li	et	al.	2011).	Such	findings	were	met	with	criticism,	noting	
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that	non	A-to-G	mismatches	have	no	biological	explanation,	and	are	suspiciously	
associated	with	the	ends	of	sequencing	reads	while	canonical	A-to-G	mismatches	
presumably	resulting	from	ADAR	editing	are	found	to	be	uniformly	distributed	
along	the	lengths	of	reads	(Pickrell	et	al.	2012,	Lin	et	al.	2012).	Conservative	
pipelines	for	RNA	editing	detection	that	minimize	the	number	of	errors	due	to	
sequencing	and	mapping	have	since	been	the	norm	(Ramaswami	et	al.	2012,	Chen	et	
al.	2014,	Fresard	et	al.	2015).	As	focus	has	continued	on	the	human	editome,	most	
pipelines	have	shifted	to	utilizing	RNA-Seq	data	alone	to	detect	putative	editing	sites	
(Lee	et	al.	2013,	Zhang	and	Xiao	2015).	While	this	may	be	an	attractive	and	cost-
effective	approach	to	identify	and	catalog	human	RNA	editing	sites,	it	may	not	be	
suitable	for	all	species	because	these	methods	rely	on	extensive	knowledge	of	
genomic	SNPs.	Furthermore,	these	methods	rely	on	multiple	SNVs	to	be	present	in	
the	same	read	to	discern	RNA	editing	from	unknown	SNPs.	
	
	
Significance		
	 As	data-driven	observational	studies	continue	to	embody	modern	biology,	
new	approaches	for	prediction	and	inference	are	needed	to	surmount	challenges	
associated	with	estimating	genome-wide	parameters.	Precision	management	of	
animals,	along	with	precision	medicine	in	humans,	demand	that	genome-wide	
prediction	can	accurately	model	heterogeneous	populations	with	complex	
substructure.	As	sequencing	costs	continue	to	decline,	the	feasibility	to	incorporate	
sequencing	data	into	genome-wide	regressions	is	greater	and	will	be	needed	to	gain	
prediction	accuracy	beyond	what	panels	of	common	SNPs	can	provide.	Even	still,	a	
complete	genome	sequence	cannot	contain	all	the	information	about	a	single	
individual	or	animal,	as	complex	transcriptional	processes	such	as	RNA	editing	add	
complexity	to	the	way	in	which	genetic	information	is	expressed.	Research	is	
needed	to	understand	why	RNA	editing	exists	and	how	it	effects	the	expression	of	
genes	and	modification	of	phenotypes.	
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RESEARCH	METHODS	
	
Aim	1)	Develop	and	implement	a	new	approach	for	genomic	prediction,	termed	the	
“continuous	model”,	to	account	for	complex	genetic	heterogeneity	
	

In	order	to	accomplish	this	aim,	I	propose	a	new	algorithm	outlined	in	the	
following	steps:	

	
1	-		Methods	such	as	k-medoids	clustering	are	used	to	identify	main	groups	

among	the	population	studied,	using	the	genomic	relationship	matrix	𝐆.	
2	-		The	medoids	from	each	group	are	used	as	the	“center”	of	each	cluster,	

with	individuals	taken	around	each	center	within	a	Euclidian	radius	𝑟	to	
use	as	reference	individuals	for	cluster	composition	estimation	(3).	

3	-		Cluster	composition	estimation	is	performed	for	all	individuals,	where	
estimates	lie	on	a	continuum	from	0	to	1	for	each	cluster.	

4	-		A	novel	whole	genome	regression	is	performed	(6),	in	which	SNP	effects	
are	decomposed	into	the	number	of	groups	present	plus	a	common	
effect,	and	the	estimation	of	SNP	effects	is	influenced	by	the	cluster	
composition	of	each	individual.	

	
In	step	1,	the	genomic	relationship	matrix	between	all	individuals	in	the	
heterogeneous	population	is	calculated	by	G	=		𝑿𝑿

H

I
,	where	the	genotype	matrix	𝑿	is	

first	centered	and	scaled	to	a	sample	mean	0	and	unit	variance	for	each	SNP.	
Clustering	of	G	can	be	done	using	partitioning	around	medoids	(P.A.M.),	in	iterative	
process	that	converges	upon	finding	medoids,	the	observations	from	each	cluster	
with	minimal	dissimilarity	to	all	other	observations	in	its	cluster.	This	algorithm	
requires	pre-specifying	the	number	of	clusters	𝑘,	so	first	decomposing	G	into	PCs	
and	plotting	the	first	2	eigenvectors	can	help	one	estimate	the	number	of	clusters	
present.	Alternatively,	a	silhouette	analysis	can	be	used	to	estimate	𝑘	a	priori.	In	step	
2,	observations	within	Euclidean	distance	𝑟	of	each	medoid	are	used	to	compute	
allele	frequencies	for	each	cluster	for	each	SNP.	The	distance	𝑟	may	vary	depending	
on	cluster	size,	but	should	be	restricted	to	encapsulate	<	25%	of	the	observations	
from	the	cluster.	In	step	3,	the	allele	frequencies	computed	in	step	2	are	used	as	the	
design	matrix	X	from	(3),	which	is	used	to	predict	each	individual’s	genotypes	in	the	
dataset.	For	step	4,	the	resulting	group	composition	estimates	𝒄	are	used	to	fit	the	
following	model	
	

𝒚 = 𝑿𝒃; + 𝑫>𝑿𝒃> + 𝑫2𝑿𝒃2 +⋯+𝑫M𝑿𝒃𝒌 + 𝜺																													(6)	
where		
	

𝑫𝒊 =
𝒄P> ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝒄PS

	 (7)	

	
and	𝒚, 𝑿	and	𝜺	assume	the	same	roles	as	in	equation	1.		𝒃;	is	a	vector	of	SNP	effect	
components	common	to	all	groups	(main	SNP	effects),	while		𝒃P 	is	a	vector	of	SNP	
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effect	components	for	the	𝑖TUgroup	out	of	𝑔	groups.	Together,	𝑏;V + 𝑏>V + 𝑏2V + ⋯+
𝑏WV = 𝛽< 	represent	the	total	SNP	effect	of	the	𝑗TUSNP.	For	“pure”	individuals	who	
have	a	group	composition	of	1	for	group	𝑖,	the	effect	of	the	𝑗TU	SNP	becomes	𝑏;V + 𝑏P< .	
Fitting	of	(4)	can	be	accomplished	with	“Baysian	Ridge	Regression”,	as	implemented	
in	the	R	package	BGLR	(Perez	P.	and	de	los	Campos	G.	2014).	Prior	densities	for	each	
𝒃P 	are	thereby	considered	Gaussian,	with	a	scaled-inverse	Chi-squared	distribution	
used	as	the	prior	for	the	error.	
	 To	illustrate	steps	1-3	of	this	approach	more	carefully,	suppose	there	are	two	
groups,	in	which	case	(4)	simplifies	to	𝒚 = 𝑿𝒃; + 𝑫>𝑿𝒃> + (𝟏 − 𝑫>)𝑿𝒃2 + 𝜺.	A	
wheat	data	set	from	CIMMYT,	which	has	previously	been	used	to	demonstrate	
methods	for	prediction/selection	using	both	the	“stratified”	and	“interaction”	
models	(Lehermeier	et	al.	2015,	de	los	Campos	et	al.	2015)	consists	of	599	pure	
wheat	lines	genotyped	for	1279	DArT	markers	(Triticarte	Pty.	Ltd.,	Canberra,	
Australia).	We	have	used	this	data	set	to	1)	form	groups,	2)	identify	medoids	and	
surrounding	points	for	group	composition	estimation,	and	3)	estimate	group	
composition	for	all	wheat	strains,	while	constraining	group	composition	estimates	
to	be	between	0	and	1	(Figure	5).	
	

	 		
	
Figure	5.		Graphical	representation	of	steps	1	through	3	of	proposed	algorithm	using	CIMMYT	data.	
Center	of	black	circles	represent	approximate	locations	of	medoids	of	each	identified	cluster	using	P.A.M.	
and	the	radius	of	the	circle	encapsulates	those	observations	used	as	reference	in	cluster	composition	
estimation	(left).	Applying	cluster	composition	estimation	to	all	strains	results	in	quantifying	cluster	
composition	on	a	continuous	scale	(right).	
	
For	datasets	such	as	the	CIYMMT	wheat	strains	featured	in	Figure	5,	we	do	not	
expect	the	proposed	model	will	enhance	the	estimation	of	SNP	effects	or	the	ability	
to	perform	accurate	prediction.	That	is	because	these	are	pure	strains	coming	from	
recombinant	inbred	lines,	in	which	cluster	composition	is	estimated	to	be	nearly	
pure	(100%	group	1	or	100%	group	2)	for	most	individuals.	In	this	case,	we	suspect	
the	stratified	model	could	outperform	either	the	continuous	model	or	the	
interaction	model	since	most	individuals	fall	into	distinct	genetic	groups,	speculated	
to	have	distinct	SNP	effects.	However,	I	propose	that	prediction	among	a	different	
dataset	that	exhibits	more	complex	genetic	substructure	such	as	admixture	could	be	
made	more	accurate	from	the	proposed	continuous	model	(Figure	6).	



	 14	

	
	Figure	6.	Another	example	dataset,	from	the		
Pig	Improvement	Company	(PIC),	in	which	3534	
pigs	from	a	single	PIC	nucleus	line	were	genotyped	for	
50,436	SNPs.	The	G	matrix	was	decomposed	into	the	first	
two	eigen	vectors,	and	the	first	two	PCs	are	plotted.	Colors	
represent	distinct	clusters	identified	using	K-medoids	
clustering.	
	
	
	
	
	
	
	

Aim	1a)	Determine	how	prediction	accuracy	from	the	continuous	model	compares	to	
prediction	accuracy	from	previously	developed	“stratified”	and	“interaction”	models.	
	

In	order	to	assess	prediction	accuracy	of	the	continuous	model,	I	will	
compare	the	performance	of	all	three	models	–	the	continuous,	the	interaction,	and	
the	stratified,	using	high	density	SNP	datasets	that	exhibit	varying	degrees	of	
substructure	complexity	(Table	1).	
	
Table	1.	Potential	sources	of	to	use	in	the	estimation	of	continuous	model	prediction	accuracy.	

Dataset	 𝒏	(individuals)	 𝒑	(Genotyped	
SNPs)	

#	traits	
phenotyped	 Origin	

CIYMMT	 599	 1,279	
1	trait	measured	

under	4	
environments	

Wheat	commercial	
population	(Figure	5)	

PIC	 3,534	 50,436	 3	 Swine	commercial	
population	(Figure	6)	

MSUPRP	 948	 8,848	 2	
F2	–	Decsending	
from	Pietrain	and	
Duroc	swine	breeds	

	
CIYMMT,	PIC,	and	MSUPRP	datasets	are	all	of	those	that	I	currently	possess	and	am	
available	to	utilize.	Beyond	the	datasets	provided	in	Table	1,	I	will	seek	to	obtain	
new	SNP	datasets	in	which	there	are	at	least	1,000	individuals	genotyped	at	>	
10,000	SNPs	and	phenotyped	for	at	least	1	trait.	Exact	origins	and	species	can	vary,	
but	the	amount	of	“cluster	admixture”	measured	by	the	proportion	of	individuals	
that	have	a	cluster	composition	of	less	than	75%	for	any	one	cluster,	will	ideally	be	
greater	than	0.25	in	order	to	maximize	the	benefits	of	the	continuous	model.	
	 Prediction	accuracy	will	be	compared	between	the	three	models	by	first	
dividing	each	dataset	into	training	(TRN)	and	testing	(TST)	components.	TRN	
datasets	will	be	used	to	fit	the	models	expressed	in	equations	(3),	(4),	and	(6).	The	
accuracy	of	predictions	for	each	model	will	be	assessed	in	TST	individuals.	50	
repetitions	of	prediction	accuracy	assessment	will	be	done	by	randomly	assigning	
150-900	individuals	to	the	TST	component	(depending	on	total	sample	size	n),	
leaving	the	remainder	to	the	TRN	component.	For	each	dataset,	prediction	accuracy	
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will	be	measured	as	the	correlation	between	predictions	and	observed	phenotypes	
after	50	trials.	
	 We	hypothesize	that	no	one	model	–	stratified,	interaction,	or	continuous	will	
outperform	the	others	for	all	datasets.	Instead,	the	optimal	model	to	use	to	obtain	
maximum	prediction	accuracy	will	likely	depend	on	the	data	and	its	substructure,	
which	can	be	characterized	by	parameters	including	the	aforementioned	“cluster	
admixture”.	Using	a	dataset	where	cluster	admixture	is	roughly	zero,	meaning	that	
all	individuals	belong	to	a	cluster	with	a	cluster	composition	>	0.75,	to	fit	either	the	
interaction	or	continuous	model	will	likely	result	in	over	fitting	because	such	
datasets	are	less	likely	to	contain	“main	effects”	𝒃;	common	between	groups	in	
addition	to	group	specific	effects.	
	
	
1b)	Develop	the	means	to	perform	hypothesis	testing	with	the	continuous	model	in	
order	to	infer	significance	of	SNP	effects.	
	

In	addition	to	proposing	the	continuous	model	as	one	for	prediction,	I	will	
assess	the	continuous	model’s	ability	to	infer	QTL.	Whole	genome	regressions	have	
potential	to	infer	which	genetic	loci	have	an	impact	on	phenotype	after	considering	
all	polygenic	background	effects.	The	continuous	model	has	potential	to	not	only	aid	
in	prediction	in	situations	where	complex	substructure	warrants	the	decomposition	
of	SNP	effects	into	various	components,	but	to	enable	the	detection	of	average	SNP	
effects	among	complex	populations	and	determine	their	significance.	To	enable	
hypothesis	testing	for	significant	QTL	using	the	continuous	model,	I	will	fulfill	the	
following	objectives:		

	
1. Develop	the	means	to	test	the	null	hypothesis	𝐻;: 𝒃;< + 𝒃>< + 𝒃2< + ⋯+

𝒃=< = 𝜷< = 0,	against	the	alternative	hypothesis	𝐻^: 𝜷< ≠ 0.	In	this	case,	
𝜷< 	indicates	the	total	effect	of	the	jth	SNP	when	considering	its	effects	
across	all	groups.		

2. Determine	the	null	distribution	needed	to	obtain	p-values.	
	
Although	computationally	onerous,	2)	may	be	established	by	using	permutations.	
Upon	establishing	1)	and	2),	additional	tests	will	be	implemented,	including:	
	

1. 𝐻;: 𝒃;< + 𝒃P< = 𝜷P< = 0	against	𝐻^: 𝜷P< ≠ 0.	𝜷P< 	provides	an	estimate	of	
the	jth	SNP	effect	in	the	ith	group.	

2. 𝐻;:	𝒃P< − 𝒃PH< = 0	against	𝐻^:	𝒃P< − 𝒃PH< ≠ 0.	𝒃P< − 𝒃PH< 	provides	an	
estimate	of	the	difference	in	SNP	effects	between	groups	𝑖	and	𝑖′.		

	
How	the	continuous	model	is	fit	can	have	a	dramatic	impact	on	the	estimates	of	
𝜷<, 𝜷P<, and	𝒃P< − 𝒃PH< .	After	establishing	the	means	to	conduct	the	hypothesis	tests	
above,	I	will	test	these	methods	with	the	aforementioned	datasets	by	utilizing	a	
number	of	procedures	to	fit	the	continuous	model.	These	will	include	Bayesian	
versions	of	ridge	regression	(Hoerl	and	Kennard	1970)	in	which	all	SNP	effects	𝒃P< 	
are	shrunk	toward	0,	the	Least	Absolute	Shrinkage	and	Selection	Operator	(LASSO,	



	 16	

Tibshirani	1996;	Bayesian	LASSO,	Park	and	Casella	2008)	a	variable	selection	
procedure	in	which	null	SNP	effects	are	shrunk	to	0	and	removed	from	the	model,	or	
the	Bayesian	methods	from	Meuwissen	et	al,	which	non-null	SNP	effects	are	
assumed	to	come	from	a	different	distribution	from	null	SNP	effects.	For	each	
dataset	and	for	each	Bayesian	estimator,	significance	of	SNP	estimates	will	be	
compared	across	the	continuous,	interaction	and	stratified	models	to	determine	
how	QTL	inference	may	be	affected	by	the	choice	of	model	or	the	choice	of	
estimator.	
	 		
	
Aim	2)	Investigate	the	function	and	impact	of	RNA	editing	throughout	mammalian	
evolution	and	build	novel	tools	for	the	detection,	analysis,	and	visualization	of	RNA	
editing	data.	
	

Based	on	the	observation	that	RNA	editing	of	NEIL1,	GLI1,	and	ZFP14	are	
influenced	by	the	positioning	of	nearby	Alu	elements	(Daniel	et	al.	2014),	and	that	
differences	in	transcriptome-wide	editing	between	human	and	mouse	have	been	
attributed	to	specific	properties	of	the	species’	repetitive	elements	(Neeman	et	al.	
2006),	I	am	primarily	interested	in	conducting	a	comparative	RNA	editing	study	
involving	multiple	mammalian	species	harboring	distinct	repetitive	elements.	This	
study	will	utilize	novel	software	developed	specifically	for	the	purpose	of	high-
throughput	RNA	editing	analysis.	I	will	also	assess	how	RNA	editing	detection	is	
affected	by	the	use	of	long-read	sequencing	technology	vs.	short-read	sequencing	
technology.	
	
	
2a)	Build	software	specifically	designed	for	the	detection,	analysis,	and	visualization	of	
RNA	editing	data	from	multiple	high-throughput	technologies.	
	

While	multiple	approaches	to	identify	instances	of	RNA	editing	have	been	
developed,	the	code	used	in	RNA	editing	analyses	is	rarely	published	in	full.	It	is	
possible	that	discrepancies	in	RNA	editing	results	are	at	least	in	part	due	to	poor	
practices	in	reproducible	research.	In	order	to	address	these	issues,	I	will	write	
software	for	the	R	(R	Core	Team,	2015)	framework	intended	to	analyze	large	
bioinformatic	files,	detect	candidate	RNA	editing	sites,	and	visualize	RNA	editing	
data	in	novel	ways.	The	finished	R	package	will	be	submitted	to	BioConductor	while	
an	open-source	version	will	continually	be	made	available	on	GitHub	so	that	
developers	may	contribute	or	modify	the	package	for	their	own	use.	No	such	
software	currently	exists	and	is	made	widely	available	specifically	for	the	purpose	of	
RNA	editing	analysis	within	the	R	framework,	which	is	becoming	an	increasingly	
popular	framework	for	computing	and	graphics	within	the	biological	community.		
	

This	software,	(tentatively	named	“editTools”)	is	aimed	at	implementing	
methods	for:	
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1. The	detection	and	analysis	of	RNA	editing	data	from	Variant	Call	Format	
(VCF)	and	Sequence	Alignment/Map	(SAM)	files	containing	whole	genome	
and	whole	transcriptome	sequencing	data.	

2. Merging	RNA	editing	data	with	other	annotation	files,	including	those	for	
genes/transcripts,	repetitive	elements,	miRNAs,	and	miRNA	target	sites.	

3. Visualizing	merged	datasets	by	way	of	plotting	discrete	count	data	(e.g.	
Counts	of	A-to-G	mismatches	sites	across	tissue	types,	repetitive	element	
types,	etc.),	plotting	continuous	data	(e.g.	editing	levels),	and	positional	data	
(interactive	chromosome	maps	to	show	the	position	of	candidate	RNA	
editing	sites	relative	to	genes,	repetitive	elements,	etc.)	

4. The	ability	to	process	data	from	both	short	and	long	read	sequencing	
technology,	where	differences	in	technology	warrant	alternate	mapping	and	
variant	calling	techniques.	

	
Accomplishing	implementations	1	&	2	requires	surmounting	limitations	to	

the	R	language,	namely,	the	ability	to	process	large	bioinformatic	files	efficiently.	To	
accomplish	this,	C++	source	code	can	be	used	to	build	the	editTools	package,	
providing	increased	performance	for	the	user.	I	have	already	written	a	basic	C++	
library	to	analyze	VCF	files,	and	existing	C++	libraries	to	handle	SAM/BAM	files	such	
as	BamTools	(Barnett	et	al.	2011)	can	be	incorporated	into	the	editTools	package.	
To	accomplish	all	visualization	implementations,	base	plotting	tools	in	addition	to	
the	ggplot2	package	(H.	Wickham,	2009)	will	be	used	to	plot	discrete	count	data	and	
continuous	data.	Plotting	positional	data	by	way	of	interactive	chromosome	maps	
can	be	accomplished	with	BioJS,	a	javascript	infrastructure	for	visualizing	and	
interacting	with	biological	data.	

	
	

	
Figure	7.	One	proposed	pipeline	for	editTools	usage	to	analyze	a	single	individual	with	n	tissues,	in	
which	VCF	files	(output	of	Samtools)	are	used	as	input	for	editTools.	
	

	 	 Pre-processing	(trimming,	mapping,	etc.)	of	raw	sequencing	files	will	be	
required	for	editTools	usage.	editTools	is	currently	in	development,	and	is	capable	
of	the	pipeline	depicted	in	Figure	7.	Example	usage	of	the	pipeline	and	editTools	is	
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outlined	here:	

1. Raw	sequencing	reads	from	RNA-seq	(cDNA	reads)	and	WGS	(DNA	reads)	
are	trimmed	for	quality	at	their	3’	ends.	In	addition,	cDNA	reads	are	
trimmed	6bp	at	their	5’	ends	to	eliminate	misidentification	of	DNA	RNA	
mismatches	due	to	artifacts	associated	with	the	use	of	random	hexamers	
during	cDNA	library	prep	(Lin	et	al.	2012).	

2. cDNA	reads	are	mapped	to	the	reference	genome	using	a	splice-aware	
aligner	such	as	TopHat	(Trapnell	et	al.	2009),	while	DNA	reads	are	
mapped	to	the	reference	genome	using	a	similar	algorithm	such	as	the	
one	in	Bowtie	(Langmead	and	Salzberg	2012).	Parameters	for	mapping	
may	effect	downstream	RNA	editing	results	(Lee	et	al.	2013).	

3. Uniquely	mapped	DNA	and	cDNA	alignments	are	kept	to	be	used	in	
downstream	analysis.	“Uniquely	mapped”	can	take	on	various	
interpretations	(Chen	et	al.	2014),	but	conservatively	can	be	thought	of	as	
those	reads	that	contain	only	one	alignment	in	a	sequence	alignment	file.	
In	conducting	this	step,	the	goal	is	to	limit	artificial	DNA-RNA	mismatches	
due	to	multi-mapped	reads	caused	by	homologous	sequences	and	
imperfect	mapping	algorithm	design.	

4. In	order	to	distinguish	plus-strand	transcripts	from	minus-strand	
transcripts,	which	in	turn	is	needed	to	distinguish	A-to-G	(DNA-to-RNA)	
mismatches	from	T-to-C	mismatches,	cDNA	reads	coming	from	plus-
strand	transcripts	are	separated	from	those	coming	from	minus-strand	
transcripts.	

5. Variant	calling	algorithms	to	produce	variant	calling	format	files	(VCF)	
such	as	Samtools	and	Bcftools	(Heng	L	2011)	are	used	to	process	DNA	
and	cDNA	alignments	simultaneously.	If	Samtools	is	used,	the	argument		
“-t	DP,	DV,	SP”	is	required	for	downstream	usage	with	editTools.	These	
arguments	force	the	resulting	VCF	file	to	include	per	sample	read	depths,	
variant	read	depths,	and	strand	bias	p-values	for	each	variant	site.	

6. Analysis	of	VCF	files	is	done	using	editTools,	which	by	default,	identifies	
candidate	RNA	editing	sites	where	1)	the	genotype	is	homozygous	
according	to	95%	of	the	DNA	reads,	2)	at	least	10	DNA	reads	were	used	to	
derive	the	genotype,	3)	at	least	5	cDNA	reads	from	the	same	tissue	
disagree	with	the	genotype	call,	and	4)	these	cDNA	reads	must	have	a	
strand-bias	P-value	of	0.1	or	greater.		

The	above	pipeline	uses	VCF	files	as	input	for	editTools,	which	requires	extra	work	
on	behalf	of	the	user	to	accomplish	steps	3-5	with	external	software.	Once	editTools	
incorporates	the	ability	to	handle	SAM/BAM	files,	steps	3-5	will	become	
unnecessary	for	the	user	since	editTools	will	be	able	to	handle	them	internally.	
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2b)	Test	software	using	swine	as	a	model	for	RNA	editing.	Long	read	and	short	read	
sequencing	technologies	will	be	compared	for	their	ability	to	detect	RNA	editing	
events,	and	a	subset	of	RNA	editing	candidates	will	be	validated	to	assess	detection	
accuracy.	
	
	 	 I	will	utilize	WGS	and	RNA-Seq	data	from	2	Yorkshire	male	pigs	from	the	
Functional	Annotation	of	Animal	Genomes	project	(FAANG)	to	apply	the	existing	
editTools	pipeline	(Figure	7)	and	examine	the	previously	unstudied	swine	
“editome”.	Liver,	fat,	muscle,	spleen,	cortex,	cerebellum,	hypothalamus,	and	lung	
were	collected	from	each	animal.	The	Illumina	TruSeq	Stranded	Total	RNA	Sample	
Preparation	protocol	has	been	used	to	prepare	RNA	libraries	to	sequence	at	a	depth	
of	100	million	reads	per	tissue	using	the	Illumina	HiSeq	2000.	Likewise,	genomic	
DNA	from	each	animal	will	be	purified	from	muscle	tissue	using	the	Invitrogen	
Purelink	Genomic	DNA	Mini	Kit	and	library	preps	generated	with	the	Illumina	
TruSeq	Nano	DNA	Library	Preparation	Kit	HT,	used	to	sequence	the	genome	with	
roughly	30X	coverage	using	the	Illumina	HiSeq	2500.	
	 	 With	data	from	8	tissues	and	two	biological	replicates,	I	will	analyze	the	
differences	in	editing	patterns	between	the	tissues	and	determine	if	differential	
ADAR	expression	can	explain	the	variation	that	is	observed	in	the	number	of	editing	
loci	and	average	editing	levels.	Canonical	(A-to-G)	editing	sites	within	coding	
regions	(expected	to	be	less	than	100)	will	be	validated	using	Sanger	sequencing.	A	
subset	(	<	30)	of	non-canonical	candidate	editing	sites	will	also	be	selected	for	
Sanger	sequencing.	I	will	determine	if	there	are	any	patterns	among	those	that	can	
and	cannot	be	validated,	so	as	to	improve	the	predictive	accuracy	of	the	current	
pipeline.	
	 	 Using	“3rd	generation”	long-read	sequencing	platforms	developed	by	Pacific	
Biosciences	(PacBio),	we	will	also	apply	editTools	to	determine	how	long-read	
sequencing	technology	compares	to	the	“2nd	generation”	short-read	technology	of	
Illumina	in	conducting	genome-wide	RNA	editing	scans.	Potentially,	using	long-read	
technology	can	overcome	challenges	associated	with	mapping	reads	to	the	reference	
genome	and	could	improve	the	accuracy	of	RNA	editing	detection	(Roads	and	Au	
2015).	From	USDA-MARC,	we	will	obtain	PacBio	Single	Molecule,	Real-Time	(SMRT)	
genome	sequence,	along	with	PacBio	full-length	Iso-Seq	transcriptome	sequences	
from	the	same	animal	for	a	number	of	swine	tissues	including	hypothalamus,	spleen,	
thymus,	and	small	intestine.	Results	in	the	form	of	DNA-RNA	mismatch	counts,	
editing	levels,	and	positions	of	mismatches	will	be	compared	when	using	PacBio	
long-read	cDNA	reads	against	Illumina	short-read	cDNA	reads	from	the	same	animal	
and	tissues.	In	both	instances,	SMRT	DNA	reads	will	be	used	to	determine	the	
genotypes	of	candidate	RNA	editing	loci.	Although	PacBio	sequencing	is	known	to	
have	a	higher	error	rate,	we	propose	that	the	drawbacks	to	sequencing	error	can	be	
overcome	with	sufficient	depth.	That	is	why	we	will	require	at	minimum	30X	
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coverage	of	genome	and	transcriptome	from	both	SMRT	and	Illumina	technologies.		
	
	
2c)	Perform	a	comparative	study	in	which	RNA	editing	patterns	are	compared	across	
a	number	of	mammalian	species	harboring	different	genomic	features.	
	
	 As	RNA	editing	studies	are	becoming	increasingly	human-centric,	I	will	
reassess	the	“editability”	of	other	mammalian	genomes	again	using	the	functionality	
of	editTools	and	short-read	sequencing	technology.	We	believe	that	the	human	Alu	
may	not	be	the	only	SINE	element	to	influence	the	editome	of	a	mammal	in	
significant	ways.	The	swine	specific	PRE1	element	resembles	the	human	Alu	in	
many	ways	including	copy	number,	length,	and	divergence.	If	editability	is	of	a	
transcriptome	is	dependent	on	these	factors,	then	we	would	expect	the	swine	
transcriptome	to	be	as	edited	as	human.	Through	collaborators	and	available	online	
datasets,	we	will	obtain	WGS	and	liver	RNA-Seq	data	from	five	different	
representative	species	(Table	2),	each	possessing	a	different	SINE	repertoire.		
	
Table	2.	Representative	species/SINE	elements	for	comparative	RNA	editing	study	

SINE	element	 Length	 Copy	
number	

Structure*	 Species	

Alu	 282bp	 1.1x106	 7SL-7SL	 Primates	

B1/B2/B4	 135/185/278bp	
8x103	–	
6.5x105	 7SL	 Rodents	

PRE1	 246bp	 1x106	 tRNA-??	 Swine	

Bov-tA	 204bp	 2x105	 tRNA-LINE	
Cattle,	goats,	

sheep	

Fc-1	 105bp	 4-6x104	 tRNA	 Cat,	dog,	
panda	

*	Structure	denotes	the	ancestral	origins	and	structure	of	each	element.	For	example,	the	primate	Alu	
element	is	made	up	of	two	components	each	derived	from	a	7SL	RNA.	“??”	denotes	an	unknown	
structural	component.	
	
We	will	require	2	biological	replicates	from	each	–	human	or	macaque,	mouse,	pig,	
cattle	or	sheep,	and	cat	or	dog.	For	each	animal/individual,	genome	sequencing	
depth	must	be	at	least	30X,	and	liver	transcriptome	sequencing	must	consist	of	at	
least	90M	cDNA	reads.	For	swine/PRE1,	the	two	Yorkshire	animals	used	in	aim	2b	
will	be	reused.		
	 In	this	observational	study,	the	editomes	of	each	species	will	be	compared	
and	the	level	of	conservation	of	RNA	editing	patterns	will	be	elucidated.	Total	
numbers	of	editing	loci,	their	positions,	and	their	editing	levels	will	be	analyzed	to	
determine	if	widespread	RNA	editing	is	truly	a	unique	feature	to	humans	and	other	
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primates.	The	editability	of	each	SINE	element	and	each	SINE	subfamily	for	each	
species	will	be	evaluated.	Editability	can	be	strictly	defined	as	the	fraction	of	the	
number	putative	edits	/	(number	of	putative	edits	+	adenosines)	along	a	particular	
SINE	element.	For	each	candidate	RNA	editing	site	in	a	repetitive	region,	I	will	
calculate	the	distance	to	the	nearest	inverted	repetitive	region	of	the	same	type,	
since	only	those	SINE	elements	that	are	able	to	form	dsRNA	should	be	editable.	
Lastly,	to	assess	the	theory	that	RNA	editing	in	coding	regions	is	influenced	by	
nearby	SINE	elements,	I	will	identify	putative	A-to-I	editing	sites	in	coding	regions	
for	each	species	and	assess	their	distance	to	nearby	edited	SINE	elements.	If	across	
species,	conserved	RNA	editing	sites	in	coding	regions	are	associated	with	nearby	
SINE	elements,	then	this	can	provide	evidence	that	SINE	elements,	regardless	of	
their	origin,	may	have	positional	constraints	to	preserve	the	editing	of	particular	
coding	regions.	
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PROSPECTIVE	TIMELINE	
	

	 Aim	1	 Aim	2	

Spring	2016	
Seek	additional	SNP	
datasets	for	prediction	

analysis.	

Locate	additional	
sequencing	datasets	for	
comparative	study.	

Enhance	the	functionality	
of	editTools	to	take	
SAM/BAM	as	input.	

Summer	2016	

Determine	prediction	
accuracy	of	continuous	
model.	Begin	theoretical	

work	needed	for	
inference.	

Begin	preparing	editTools	
for	Bioconductor	

submission.	RNA	editing	
analysis	of	8	swine	

tissues.	

Fall	2016	 Test	inference	abilities	of	
continuous	model.	

Finalize	editTools	
submission.	Assess	
impact	of	RNA	editing	
detection	using	long	vs	

short	reads.	

Spring	2017	
Finalize	prediction	and	
estimates	estimates	with	
any	additional	datasets.	

Conduct	comparative	
RNA	editing	study	using	

multiple	species.	

Fall	2017	 Finalize	Aims	1	and	2.	Refine	editTools	to	keep	pace	
with	other	software,	writing.	

Spring	2017	 Writing,	defense,	corrections.	
	
	
POTENTIAL	FUNDING	SOURCES	
	
Funding	from	USDA	and	NSF	will	be	sought	for	additional	resources	toward	whole-
genome	sequencing	and	whole-transcriptome	sequencing	of	swine	to	aid	in	aims	2b	
and	2c.		
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